
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-2, May 2018

13

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd. Retrieval Number: B3134058218

Abstract: This is a new paper on the algorithm "Darksort". It is

a linear sorting algorithm that operates in O(n) timeand space

complexity. It uses advanced data structures to be highly

applicable in many Computer Science uses. Comparisons to other

linear sorting algorithms are included.

Index Terms: Computer Science, Data Structures, Algorithms,

Sorting

I. INTRODUCTION

A new sorting algorithm called "Darksort" or "darksort" has

been created by me. In this paper you will find the algorithm

itself, some direct proofs of run time, and comparison to other

sorting algorithms. In general it runs in O(n) time and space

complexity. It uses advanced data structures to improve

speed in sorting. It is an integer sorting algorithm. Darksort is

a new sorting algorithm that is explained in this paper.

II. BODY TEXT

A. Model

It takes in an unsorted or sorted array Array and an integer

Arraysize that describes the size of the array, as well as max

in <maxvariant>.

B. Proof

1) Direct-access table darksort (original darksort)

First I will provide implementation pseudocode (Fig. 1)

and then I will provide the direct proof and a brief

explanation of the program correctness.

Manuscript received on April 25, 2018.

Blake MacKenzie Burns, Department of Computer Science, University

of Toronto, Toronto, Canada, E-mail: blake.burns@gmail.com or

blake.burns@mail.utoronto.ca

Figure 1

As you can tell the direct proof is quite easy, it is simply

three for loops where the first and second run in time

Arraysize (which is O(n)) (guaranteed to terminate) and then

the last for loop which runs in the time of max (which is

O(max)) which is the largest value of the array. This is the

slowest part. So, in total, it is clear that it runs in O(2n + max)

and since max is a constant, it runs in O(2n) therefore O(n)

time. Please note that when max is used as a variable, it can

be reduced to O(n + max) in runtime as it requires one less for

loop as seen in Fig.1 <maxvariant>.

 The first for loop initializes the max value, which is the

largest size for the array in the DAT. The next for loop

creates the direct access table which stores the value of the

number of each unique value in the data set (numerical),

which is very large in memory size. The last portion is the

part which uses this DAT to create a sorted list. All are

guaranteed to terminate as they are straightforward for loops,

and thus the program terminates.

Darksort: A New Linear Sorting Algorithm

Blake MacKenzie Burns

mailto:blake.burns@gmail.com
mailto:blake.burns@mail.utoronto.ca

Darksort: A New Linear Sorting Algorithm

14

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.
Retrieval Number: B3134058218

2) AVL darksort

Figure 2

This provides an example in how darksort can be used to

sort the data into a stronger or perhaps more useful way for

which its uses are numerous (such as AVL tree storage of

data for different uses with log(n) operations and darksort for

sorting).

3) Heap darksort

Figure 3

This provides an example in how darksort can be used to

sort the data into a simple heap which will result in much

faster retrievals in data in certain applications such as

popping off advertisements to serve them to clients in a near

constant fashion (log(n) operations at worst for insert,

constant pop).

4) General Data Structures

This section will display that darksort can be extended to

any data structure, with both the original and <maxvariant>

versions (Fig. 4). (General data structure = GDS)

Figure 4

As you can see any general data structure can be used to

implement darksort. It works for any data structure that can

create and insert and can be modified for others.

III. THOUGHTS

In general, DarksortDAT is what is most important, but

data structure versions can improve space complexity.The

space complexity is exactly two times the size of the input

array as well as gaps included in the max array finalarray. To

be precise it is explainable as such. In an array given of:

 A = [10,10,8,6,5,2,3,1]

It uses darksort to sort the array in O(2n + max) assuming

max isn’t givenwhich results inO(2n + 10) time (max

included is n + max), with a space complexity including gaps

of O(2n + max) which equates to O(2n + 10). Both of these

complexities are in the element of O(n). The data structure

variants such as heap or AVL (and others) improve the space

complexities of the algorithm significantly in the long term as

you can simply use bubble in heap or rebalance AVL trees in

O(logn) time to improve space complexity as examples.

The space complexity is large becausedarksort holds gaps

for 4, 7, 9(in this example) in newarray which are missing in

the data set in memory. This is because newarray holds up to

max numbers and although 4, 7, 9 stay as 0 they are still held

in space. Array is obviously held in memory as it is dealt

with, which gives (n) space, newarray is held which gives

(max), and the finalarray is held which yields one more (n)

giving (n + max + n == 2n + max). If Array is taken for

granted then it is only O(n + max) but without Array in space

it gives O(2n + max) space complexity.

The space looks like this for new array:

Space = [1,2,3,4,5,6,7,8,9,10]

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-8 Issue-2, May 2018

15

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd. Retrieval Number: B3134058218

The returned array will be ascending order using the

original darksort algorithm:

A = [1,2,3,5,6,8,10,10]

Most importantly, this is a stable sorting algorithm.It can

be changed to descending order by iterating backwards over

the newarray in the final for loop.

IV. COMPARISON TO OTHER LINEAR SORTS

Direct algorithm comparison is left to the reader.

A. Counting Sort

Counting sort is a sorting algorithm that is similar to

darksort in that it uses no comparisons but has a different

algorithm entirely. Its input is very similar to darksort. The

Big-O time complexity is O(n + k) where n is the number of

items and k is the max value [1]. A quick discussion on

counting sort: it uses a similar way but note that when max is

used as a variable it uses one less for loop and therefore beats

it by n (Counting sort: including constants 2n + k, Darksort n

+ max where max = k). The algorithm darksortis very

different compared to counting sort. The algorithm counting

sort is available to view at reference [2]. It functions in a

completely different way. To be more detailed, Darksort

beats it in computation speeddoing less computations by (13n

– 3max) Notice if max is equal to 13/3n the speeds are equal

and slower if it is larger than 13/3n. As long as there are not

too many gaps in the data such as {1, 300, 1600, 2100, 5300,

…., 10000}, the max should be less than 13/3n and would be

faster in that scenario. {5, 3, 7, 2, 9, 1, 4, 8, 6, 10} is faster

with darksort for example by 10n.

B. Radix sort

Radix sort is a sorting algorithm that sorts using one integer

at a time. It can also be used to sort strings [3]. A quick

discussion on radix sort: With word sizes such as 64 bit

numbers (8 bytes) it depends on the size of the max. Very

clearly different from this algorithm as well, and is unique in

this respect. Radix sort is (wn) and when word size is 64 bits

let us estimate it as (64n). That means as long as k is less than

62n it is at least the same or better than radix sort. Darksort

improves on a factor of n with max as a variable so it can have

max less than 63n, and still be faster than radix sort, even

without distinct keys.

In a practical application such as sort with unique keys both

counting sort and Darksort seem superior to radix sort. The

algorithm is entirely different from radix sort and radix sort is

available from reference [3].

C. Bucket sort

In bucket sort, the algorithm sorts the items into buckets

and then sorts using insertion sort [3][4].Not much needs to

be discussed besides providing an additional source on the

algorithm for it to be compared by the reader. There is a

variation on bucket sort called Groupsort that is not like it at

all [5]. It clearly beats bucket sort as it has a worst-case

complexity of O(n
2
).

D. Pigeonhole sort

It is a very similar to bucket sort in that it places elements in

buckets as well [6]. It is clear that this algorithm is similar to

mine, but mine improves on pigeonsort by a couple lines of

code. They are very similar but darksort does not require the

minimum value in a for loop and has slightly less lines of

code overall. Therefore it does beat the pigeonhole sort time

complexity in the worst case. In general it wins with less

comparisons for min (an if statement and an assignment for

min throughout a for loop) and also some addition statements

throughout the algorithm that use min. Overall darksort can

be substantially faster when implemented properly (by max

in computation (not Big-O) in general).

V. CONCLUSION

Darksort is a unique linear sorting algorithm with superior

performance to all other linear sorting algorithms under

certain circumstances. One should note that if you have the

min, or use a for loop to get it, you can iterate in the last loop

from only min to max or max to min depending on how you

want it sorted (ascending and descending respectively). This

changes the amount of computation in the algorithm and

makes it much faster.Also if you can minimize gaps in the

data somehow darksort is preferable to all sorting algorithms.

Counting sort can have an advantage if max is larger than

13/3n, but in normal circumstances with proper data storage

darksort is faster. Radix sort can have an advantage under

certain circumstances but given highly distinct keys and large

word size darksort is superior with a max within reason. This

is a completely original theory that was done without looking

into other linear sorting algorithms. It seems that there are no

other linear sorting algorithms exactly like it, although

counting sort is somewhat similar in concept and

pidgeonhole sort, darksort is a unique new theory. It is an

integer sorting algorithm only. I am proud that it beats every

sorting algorithm in speed, although the space complexity

may be larger than others.

REFERENCES

1. Kazim Ali. "A Comparative Study of Well Known Sorting

Algorithms". V. 8, No.1 Jan-Feb 2017, International Journal of
Advanced Research in Computer Science pages 1-5.

2. Stijn de Gouw, Frank de Boer, Juriaan Rot. "Proof Pearl: The KeY to

Correct and Stable Sorting". V. 53.2, 2014, Journal of Automated
Reasoning pages 129-139.

3. PanuHorsmalati. "Comparison of Bucket and Radix sort".

https://arxiv.org/abs/1206.3511. V. 1206.3511v1 [cs.DS], 2012, pages
1-10.

4. Paul M. E. Shutler, Seok Woon Kim, Wei Yin Selina Lim. "Analysis of

Linear Time Sorting Algorithms". V. 51, Issue 4, Oxford University

Press on behalf of The British Computer Society, pages 451–469.

5. Apostolos Burnetas, Daniel Solow, Rishi Agarwal. "An analysis and

implementation of an efficient in-place bucket sort". V. 34, 1997. Acta
Informatica, pages 687–700.

6. Paul E. Black, "Pigeonhole sort", in Dictionary of Algorithms and Data

Structures [online], VredaPieterse and
https://www.nist.gov/dads/HTML/pigeonholeSort.html. 2006. Paul E.

Blacks eds.

Blake MacKenzie Burns is a student at

University of Toronto with a Specialist in
Computer science and a Minor in Classical

Civilization, this paper is his first journal

publication, and he is working on some other
papers such as papers in robotics, and he is

also currently working on a small paper on

triangulation and tessellation that he hopes to
publish soon. Among his interests in

Computer Science are algorithm efficiency,

sorting, artificial intelligence and machine
learning, robotics, NP hard problems,

language creation, and more.

